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Abstract

A Lagrangian approach is used to describe turbulent two-phase particulate ¯ows. Special attention
focuses on a currently used model based on the Langevin equation with instantaneous relative velocity
of ¯uid and particles. A detailed analysis of the model is performed and its drawbacks are discussed.
Afterwards, a novel model for particle dispersion in homogeneous turbulence is proposed. It is built on
physical arguments quite di�erent from those underlying the previous model: rather than instantaneous
relative velocities, averaged characteristics of the motion of solid±¯uid particle pairs are considered. The
new model accounts for both inertia and external force e�ects. It is validated by comparison with
existing experimental data on particle dispersion in grid turbulence and with large-eddy simulations of
homogeneous turbulence. # 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Two-phase turbulent ¯ows with particles (`particle' is here a generic term for both solid
particles and liquid droplets) are common in the environmental science and engineering. There
are two established ways of modelling these ¯ows. In the `two-¯uid' (or Eulerian) approach
both phases are treated as interacting and interpenetrating continua; a number of mean
variables (such as velocity, turbulent kinetic energy, etc.) are selected separately for the two
phases and Reynolds-averaged equations governing their evolution are solved. On the other
hand, in the `trajectory' (or Lagrangian) approach the dispersed phase is directly treated as an
ensemble of many individual inclusions; the exact instantaneous equations governing particle
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dynamics are replaced by modelled ones and mean quantities (velocity, concentration,
turbulent kinetic energy) are obtained afterwards by ensemble averaging over a large number
of particles. Advantages and drawbacks of the Eulerian and Lagrangian description have been
discussed by Crowe (1982), Durst et al. (1984) and Stock (1996). Although the two approaches
applied to dispersed turbulent ¯ows are often presented as being fundamentally di�erent, this
is, in a way, misleading. The description is indeed made with di�erent variables (Eulerian or
Lagrangian) but the underlying models are often the same (cf. Simonin et al., 1993; Simonin,
1996).

1.1. Background

The starting point of the Lagrangian approach is the particle equation of motion (see Maxey
and Riley, 1983; Gatignol, 1983). It contains several terms, but with the assumptions of heavy
particles, rfWrp, and no rapid transients, the drag and buoyancy forces are shown to be
dominant:

dxp
dt
� vp;

dvp
dt
� v�xp�t�; t� ÿ vp

tp
� g �1�

Here, the drag term has been written using the particle relaxation (dynamic response) time

tp �
rp
rf

4d

3CDjvÿ vpj �2�

with the drag coe�cient CD=CD(Rep) usually given by a semi-empirical formula written as a
function of the particle relative Reynolds number (Clift et al., 1978).
As readily seen in (1), the driving ¯uid velocity v*(t)= v[xp(t), t], i.e. instantaneous velocities

of successive ¯uid particles (F, cf. Fig. 1) that cross the solid particle (S) trajectory xp(t), is a
function of time only (henceforth variables denoted by an asterisk relate to the ¯uid `seen' by
the particles). So, the equation of motion can be used (in principle, at least) to compute the
statistical characteristics of the particle velocity vp as a function of the ¯uid velocity `seen' v*.
However, the main di�culty lies in the accurate prediction of v*(t) in the general case of
turbulent ¯ow. The point is that the Reynolds averaging in ¯uid turbulence results in transport
equations for the mean variables like mean velocity hVi, turbulent kinetic energy k, turbulent

Fig. 1. Fluid element and particle paths.
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energy dissipation rate E, but during the averaging process, detailed information about
instantaneous ¯uid structures is lost. In the Lagrangian approach to particle dispersion one has
thus to somehow reconstruct instantaneous (or ¯uctuating, since mean values are given) ¯uid
velocities from the averaged Navier±Stokes equations.
In order to develop stochastic models or schemes for the generation of v*(t), one typically

uses, together with particle parameters (such as tp), a few quantities derived from the ¯uid
variables, like the Eulerian length scale LE or the Lagrangian time scale TL; based on simple
dimensional arguments, these scales are estimated as LE=CEk

3/2/E and TL=CLk/E (CE and
CL are experimental constants). The modelling of v*(t) is complicated, because of two e�ects
that cause the ¯uid element and particle trajectories to di�er: ®rst, particle inertia that induces
a relative instantaneous motion of particles with regard to their ¯uid neighbourhood, and
second, mean particle drift due to gravity.
In the case of stationary isotropic turbulence with no external force, particle inertia is the

only relevant e�ect. Tchen (see Hinze, 1975) expressed the particle ¯uctuating velocity variance
hv p2(t)i and velocity correlation function in terms of ¯uid characteristics, i.e. the ¯uid velocity
variance s f

2, the ¯uid Lagrangian autocorrelation function RL(t) or its temporal integral (the
Lagrangian timescale TL); he stated that

hv2p�t�i � s2f
TL=tp

1� TL=tp
: �3�

The ratio of characteristic timescales, TL/tp, stands for the inertia parameter characterizing the
in¯uence of turbulence on the particle motion.
In a gravity ®eld (or any external force ®eld), there is a relative mean motion of heavy

particles and the turbulent ¯uid neighbourhood; due to their free-fall velocity, vg= hvpi, the
particles continuously drift from one ¯uid element to another. Consequently, the ¯uid velocities
`seen' by the particles are usually less correlated than the Lagrangian ¯uid velocities and the
dispersion coe�cient decreases. The phenomenon (called `crossing trajectory e�ect') can be
characterized in terms of the nondimensional ratio of characteristic velocities x= vg/sf .
Csanady (1963) proposed expressions for the velocity correlation and the Lagrangian
timescales of the ¯uid `seen':

R�L�:��Dt� � hv��:��t�v��:��t� Dt�i � exp

�
ÿ Dt
T�L�:�

�
;T�L�k� �

TL������������������
1� b2x2

p ;

T�L�?� �
TL��������������������

1� 4b2x2
p �4�

where b= TL/TE=sfTL/LE and the subscript (�) denotes direction either parallel (k) or
perpendicular (_) to that of the external force.

1.2. Objective

In the present work, we will apply the Lagrangian approach to compute particle dispersion.
We will consider dilute, or low-loading, two-phase ¯ows containing spherical particles with the
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one-way momentum coupling, i.e. ¯ows where the in¯uence of the dispersed phase on the
carrying ¯uid (but not the inverse) can be neglected.
The aim of the present study is to analyse the consistency and the physical justi®cation of

the modelling steps, as well as to put forward a new dispersion model, based on conclusions
from the analysis. In particular, the issue of the relative velocity of particle±¯uid pair is found
to be of primary importance for a sound model; that is why the modelling of the particle
inertia and the mean drift e�ects is thoroughly examined. For this reason, particle dispersion is
considered only for the case of isotropic stationary turbulence and the paper is not directly
concerned with the comparison of performance of di�erent models in practical situations.
The paper is organised as follows. Existing turbulent dispersion models are recalled in

Section 2; the subsequent sections contain an original material. First, a detailed analysis of an
often used two-step Langevin model is presented (Section 3). Then, a novel model for particle
dispersion is proposed and discussed (Section 4); physical arguments behind this model are put
forward. Next, results of numerical simulation of the dispersed phase are given (Section 5). The
performance of the new model is examined by comparison with existing experimental data on
particle dispersion in grid turbulence and with the outcome of a `numerical experiment' (the
large-eddy simulation). Finally, Section 6 is devoted to summary and conclusions.

2. Existing Models of Turbulent Di�usion and Dispersion

A common feature of most Lagrangian methods used to date is the decomposition of the
driving ¯uid velocity into the mean and the ¯uctuating parts. The mean ¯uid velocity ®eld
results from the continuous phase computation and is interpolated at particle locations. Then,
a Lagrangian model gives the ¯uctuating component. This decomposition is not necessarily the
most convenient one and working with the instantaneous velocities is often better in the
general case. However, in the present work, concerned with the homogeneous isotropic
turbulence, in the reference frame moving with the constant mean velocity there is no
di�erence between instantaneous and ¯uctuating velocities. Most Lagrangian models for two-
phase ¯ows follow a twin ¯uid particle along with the solid particle and the ¯uid velocities seen
by the solid particle are derived from a two-step scheme. Therefore we start our presentation
with the question of ¯uid di�usion before considering particle dispersion.

2.1. Models for ¯uid di�usion

Historically, the ®rst method developed (Gosman and Ioannides 1981) was the eddy-life time
(ELT). Its major feature is the sampling of the ¯uid particle ¯uctuating velocity in the
Gaussian distribution of zero mean and a variance equal to the mean square turbulent velocity.
The sampled velocity is kept constant during a time interval T corresponding to the typical
timescale of the energy containing eddies. The drawbacks of the method are twofold: a
resulting velocity correlation coe�cient is linear (rather than exponential), and the velocity
record for a ¯uid particle is discontinuous. The former disadvantage has been coped with by
Ormancey (1984); he considered the time interval between subsequent velocity changes as an
exponentially-distributed random variable (a Poisson process) with the mean value T.
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To deal with the latter unphysical feature (discontinuous velocity records), a following
stochastic di�erential equation has been proposed to model the behaviour of ¯uid velocities

dv � v�t� dt� ÿ v�t� � ÿ v

TL
dt� sf

������
2

TL

r
dW: �5�

Here, dW is the Wiener process (white noise); it is a stochastic process of zero mean,
hdWi=0, a variance equal to the time interval, h(dW)2i=dt, and delta-correlated in the time
domain (Arnold, 1974; Schuss, 1980; Sobczyk, 1991). The above is the Langevin equation ®rst
proposed to model the Brownian motion; in that context, it represents the equation of motion
of a small particle in surrounding ¯uid. The e�ect of collisions of the Brownian particle with
¯uid molecules is split in two contributions: a resistive drag term and a pure random term. For
the case of ¯uid turbulence, such a division has been proposed based on di�erent arguments
(Minier and Pozorski 1997).
Obviously, since the above stochastic di�erential equation is to model the behaviour of ¯uid

elements, it needs justi®cation. First, it is generally accepted that velocity ¯uctuations are
related to the large energetic scales in turbulent ¯ow while acceleration ¯uctuations are
governed by small-scale motions. Thus characteristic time scales for velocity and acceleration
are quite di�erent. If one considers time intervals corresponding to velocity changes of a ¯uid
element, the acceleration is a rapidly ¯uctuating process and, under the assumption of
Gaussianity, it can be seen as a white-noise process. Next, the Lagrangian velocity structure
function, computed as the ensemble mean of Eq. (5) squared

DL�dt� � h�v�t� dt� ÿ v�t��2i � h�dv�2i � 2s2f
TL

dt �6�

accords with the Kolmogorov theory (Monin and Yaglom 1971) that predicts the structure
function in the inertia subrange (tZWDtWTL) to be linear with respect to the time interval,
DL(Dt)= C0hEiDt. Hence

TL � 4

3C0

k

hEi : �7�

Formula (7) is valid for stationary turbulence; we add here for the sake of completeness that
the Langevin model has recently been formulated in terms of instantaneous velocities and
extended to the general case of non-homogeneous turbulence with mean pressure gradients
(Pope, 1994):

dUi � ÿ 1

rf

@hpi
@xi

dtÿ
�
1

2
� 3

4
C0

� hEi
k
�Ui ÿ hUii�dt�

�����������
C0hEi

p
dWi: �8�

Some advantages of such a formulation, as compared to models working with ¯uctuating
velocities, can be stated: it is physically consistent (no need to use mean variables computed
from an Eulerian code) and there are no spurious drifts in non-homogeneous case (MacInnes
and Bracco 1992).
As velocities of ¯uid particles are to be generated in the numerical simulation at each time

step, a discrete version of Eq. (5) is needed. The simplest discretisation writes:
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vn�1 � avn � ben; �9�
where e is a random number taken from the standard Gaussian distribution (hei=0, he 2i=1),
denoted by e $ N (0,1). It is worth emphasizing that this simple relation embodies the main
physical idea of the model: given the value of the ¯uid particle velocity at a certain time t n, the
velocity at the next time step, t n+1= t n+Dt, is evaluated as the sum of a deterministic term
which represents the `memory' of the previous velocity and a random term which accounts for
the acceleration ¯uctuations. To ®nd the coe�cients a and b, we multiply the above equation
by v n, v n+1, respectively, and take the ensemble mean to obtain:

a �hv
nvn�1i
h�vn�2i � RL�Dt� � exp

�
ÿ Dt
TL

�
;

b2 ��hvn�1vn�1i ÿ a2h�vn�2i� � s2f �1ÿ a2�:
�10�

Here, we made use of the exponential correlation of the process and of its stationarity,
h(v n)2i= s f

2.
Eq. (9) can be thought of as a numerical scheme for (5). Indeed, the di�erential equation is

easily retrieved by taking the limit Dt4 0 and using a property of the Wiener process,
en

�����
Dt
p

4 dW. Berlemont et al. (1990) proposed a heuristic generalisation, in a sense, of the
discrete Langevin Eq. (9). They used autoregressive stochastic process so as to allow any form
of the ¯uid velocity correlation. It is worth mentioning, however, that the present Langevin
model follows a di�erent philosophy. It is not a discrete-only proposal derived to reproduce a
given correlation function, but rather a continuous model based on a stochastic di�erential
equation; only a timescale is input and the actual form of the autocorrelation is a result of the
model.

2.2. Models for particle dispersion

For inclusions such as solid particles the situation is more complicated due to the e�ects of
particle inertia and external forces such as gravity. As already mentioned, in the Lagrangian
framework the problem is to simulate the ¯uid turbulent velocities seen by particles along their
trajectories. The particle P and the ¯uid element (¯uid particle) F whose positions coincide at
some time instant will generally separate during the next time interval. Even if we are able to
somehow model instantaneous ¯uid particle velocities (using the methods that have just been
presented), we still have to estimate the velocity of another ¯uid particle F 0 given the velocity
record of particle F (see Fig. 2). The methods proposed for ¯uid di�usion have to be extended
in order to account for this separation. The possible extensions are twofold: the new driving
velocity of F 0 at t n+1 is generated either directly from the velocity of F at t n or through a
two-step approach.
Let us start with the direct approaches. First, the ELT method is readily extended to the

particle dispersion case by a modi®cation of T, taken now as the smaller of the eddy-life time
and the eddy-interaction time (Gosman and Ioannides, 1981; Graham, 1996). Second, in the
direct Langevin model (Perkins et al., 1991) the new ¯uid velocity vf 0

n+1 of the ¯uid particle F 0

at the time t n+1 is written as a function of the velocity of the ¯uid particle F at the time t n
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(see Fig. 2).

vn�1f 0 �avnf � ben; �11�

a � exp

�
Dt
T�L

�
; b � sf

�������������
1ÿ a2
p

; e 2 N �0; 1�: �12�

In this method, the Lagrangian integral timescale of the ¯uid seen by the solid particles, TL*,
is an unknown parameter which must be given beforehand. One possibility is to use Csanady's
expression (4).
On the other hand, two-step approaches (see the scheme in Fig. 2) consist of the so-called

Lagrangian step (the same as in turbulent di�usion models) where the velocity of the same
¯uid particle F at the next time step t n+1 is computed, and a subsequent Eulerian step which
generates the new velocity of F 0 from that of F at t n+1. As already shown, the Lagrangian
step consists in [here the notation di�ers slightly from that of Eq. (9)]:

vL � vn�1f � aLv
n
f � bLe

n
L; �13�

with

aL � exp

�
ÿ Dt
TL

�
; bL � sf

��������������
1ÿ a2L

q
; enL 2 N �0; 1�: �14�

A very tempting idea is to apply a similar concept to the second step, substituting time
variables by their spatial equivalents (Zhuang et al., 1989; Zhou and Leschziner, 1991; Minier
and Simonin, 1992; Lu et al., 1993). The Eulerian (spatial) step writes:

Fig. 2. Solid±¯uid pair.
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vn�1i � vn�1f 0i � aE�:�vLi � bE�:�en�1Ei ; �15�
with

aE�:� � exp

�
ÿ r

LE�:�

�
; bE�:� � sf

�����������������
1ÿ a2E�:�

q
; en�1E 2 N �0; 1�: �16�

Due to anisotropy of space correlations, these equations are written in the local coordinate
system where the vector Ox points from the ¯uid particle to the solid particle location (Fig. 2);
so, the subscript (�) denotes (k) for i=1 and (_) for i=2, 3 [cf. also Eq. (4)], respectively. To
be consistent with the properties of Markov chains, exponential functions are used for the
Eulerian correlations, and r

r � jvn ÿ vnpjDt �17�

stands for the relative distance of the ¯uid and solid particle at the time t n+1.

3. Analysis of the Langevin Model with Instantaneous Relative Velocity

The two-step particle dispersion model from the previous section, Eqs. (13) and (15), called
for brevity the Langevin model with instantaneous relative velocity (LIV), will now be
examined. Such an analysis seems worthwhile, because the LIV model is in frequent use
nowadays (Berlemont et al., 1990; Burry and Bergeles, 1993; Lu et al., 1993; Ormancey, 1984;
Sommerfeld et al., 1993; Yvergniaux, 1990; Zhuang et al., 1989) and its drawbacks have not
yet been discussed in the literature. The idea of the model is an individual treatment of all
¯uid-solid particle pairs; namely, all relative distances between ¯uid and dense particles are
calculated from their simulated instantaneous velocities. A number of characteristic features of
the LIV model will be discussed in the sequel. Numerical simulations will illustrate and support
the theoretical considerations. We start the analysis by considering the case without an external
force ®eld, g=0. The e�ect of gravity will be accounted for in Section 3.5.

3.1. Di�erential limit of the spatial step

It was stated in the previous section that for the Lagrangian step, in the limit Dt4 0 the
discrete Eq. (9) becomes the di�erential Eq. (5) that is physically justi®ed. Now, for the
Eulerian (spatial) step, the di�erential equation corresponding to Eq. (15) writes

dv � ÿ v

LE
dr� sf

������
2

LE

r
dW: �18�

The velocity di�erences over distances Dr that lie in the inertia range, ZWDrWLE, are given by
Dvr= v(r+Dr)ÿ v(r). They are Gaussian random variables whose ®rst three moments are:
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hDvri � 0; h�Dvr�2i � 2s2f
LE

Dr; h�Dvr�3i � 0: �19�

On the other hand, the Kolmogorov hypothesis yields the following scaling laws for the
velocity structure function:

hDvri � 0; h�Dvr�2i � �hEiDr�2=3; h�Dvr�3i � hEiDr: �20�
We can see that the Langevin equation model respects neither the famous two-third power law
scaling of the characteristic eddy velocities in the inertia range nor the third order moment.
Yet, the skewness has a clear signi®cance in turbulence theory where it is related to energy
transfer from larger to smaller scales which is not present here. Thus, contrary to (5), Eq. (18)
has less physical support. On the other hand, note that the above-listed limitations not
necessarily invalidate a Langevin-type equation of the form (18), but rather the present
formulation with a linear drift and a constant di�usion coe�cient.

3.2. E�ect of ®nite correlation length

In the methods originally proposed by Zhuang et al. (1989) and Berlemont et al. (1990), the
same ¯uid particle accompanying a dense particle is followed during several time steps until the
distance between them becomes greater than a certain cuto� length LD, usually of the order of
LE (see Fig. 3a). A physical argument behind the cuto� length concept is that the velocities of
two ¯uid particles separated by a distance greater than LD are practically uncorrelated. Yet,
the turbulent ¯ow should be considered as an ensemble of structures whose dimensions belong
to the whole spectrum rather than a set of eddies of a typical size LD.
In the Langevin equation model proposed for example by Minier and Simonin (1992), no

decorrelation length is introduced since it is believed that the crossing-trajectory e�ect is
already simulated by the Eulerian step which actually induces a loss of correlation and should
not be supplemented with a cuto� parameter. Given a particle P and a ¯uid particle F whose
locations coincide at time t n, they will usually separate at t n+1. The two-step approach
requires the generation of the velocity of the new ¯uid neighbour F 0. For the next time step,
from t n+1 to t n+2, it is also possible to derive the next ¯uid velocity vf0

n+2 from vf 0
n+2 instead

of going back to F and deriving it from vf
n+2. It seems that the ®rst choice is more reasonable

Fig. 3. Particle dispersion based on the instantaneous relative velocity: (a) classical method; (b) method used in the
simulation.
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since, by changing the twin ¯uid particle at each time step (see Fig. 3b), we have to span
smaller distances for which the method is more reliable.
The value of LD is often considered to be a free parameter of the LIV model, thus enabling

to obtain the best ®t of the simulated dispersion results to the experimental data. Ormancey
(1984) and Yvergniaux (1990) took LD=L E(_), whereas LD=1.5L E(_) was the value used by
Zhuang et al. (1989) and Berlemont et al. (1990).
The introduction of a ®nite correlation length means that the tail of the correlation RE(r) is

disregarded for distances rr LD. This implicitly introduces a modi®ed correlation coe�cient
RÃE(r) and leads to an arti®cial decrease of the simulated lengthscale. In order to measure this
e�ect, consider, for the sake of simplicity, a one-dimensional case; it is, in fact, equivalent to a
three-dimensional case with LE�k�=L E(_). A formula used to simulate spatial correlations,
proposed in the cited papers, writes:

R̂E�r� � RE�r� for rRLD

0 for r > LD:

�
�21�

The Eulerian spatial velocity correlation coe�cient RE may take the exponential form:

RE�r� � exp

�
ÿ r

LE

�
�22�

or can be constant: RE(r)=1 (spatial equivalent of the ELT method). Let us calculate the
spatial correlation which is actually simulated:

R
�sim�
E �r� � 1

s2f
hv�r�v�r� r�i: �23�

Here, the angular brackets denote the ensemble mean over all realizations for a given initial
position r, whereas an overbar stands for the average over all values of r. Because of
periodicity, it is su�cient to consider the values of r from the interval [0, LD]. So we write:

R�sim�E �r� � 1

s2fLD

�LD

0

hv�r�v�r� r�idr � 1

s2fLD

� �LDÿr

0

�
�LD

LDÿr

�
hv�r�v�r� r�idr �24�

for r< LD; obviously, R E
(sim)(r)=0 for rrLD. The second integral is zero because the

velocities v(r) and v(r+ r) are always uncorrelated (rR LD and r+ rr LD). Thus:

R
�sim�
E �r� � 1

LD

�LDÿr

0

R̂E�r� dr �
�
1ÿ r

LD

�
R̂E�r�: �25�

The corresponding simulated integral lengthscale is:

L�sim�E �
�1
0

RE�sim��r� dr �
�LD

0

�
1ÿ r

LD

�
RE�r� dr

�LE�k� 1ÿ LE�k�
LD

�
1ÿ exp

�
ÿ LD

LE�k�

��� �
;

�26�
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the last equality holds for RE(r) given by (22). This result shows that the introduction of a
cuto� length reduces the integral lengthscale that is actually simulated: if we take LD=LE�k�,
then L E

(sim)=LE�k�/e= LE/e. Results of numerical simulations of the correlation RE
(sim)(r),

presented in Fig. 4, con®rm predictions of the theoretical analysis, as given by (25) with (21).
In plot 4a, the exponential correlation coe�cient RE(r), Eq. (22), is used for the Eulerian step
with no cuto� length, whereas in plot 4b a ®nite cuto� length is introduced. Plot 4c with
RE(r)=1 corresponds to the ELT method.

Fig. 4. Numerical realisation of the spatial correlation coe�cient: (a) with continuous velocity sequence (LD=1);
(b) exponential correlation (22) with a ®nite cuto� length LD=0.2; (c) constant correlation with a ®nite cuto�
length LD=0.2. LinesÐtheoretical curves, symbols (triangles)Ðsimulation.
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It is thus clear that methods with a ®nite cuto� length, where the accompanying ¯uid
particle is changed every several time steps, are inconsistent. The arti®cial decrease of the
velocity correlation is due to the introduction of a ®nite value of LD. Moreover, in the
simulations with LD=1, the use of (21) would be unacceptable, for the same ¯uid particle
would be followed all the time, whatever the distance r. Consequently, it seems preferable to
change the driving ¯uid particle attached to the solid one at each time step.

3.3. Turbulent kinetic energy of the ¯uid `seen' by the particles

As already precised, the formula for the Eulerian step is proposed by analogy with the
Lagrangian one. Therefore, the coe�cients aE and bE in Eq. (15) are calculated from the
conditions that the averaged spatial correlation RE(r) be respected and the kinetic energy of the
¯uid `seen' be conserved. However, unlike the Lagrangian correlation coe�cient aL, the
Eulerian one, aE, is calculated separately for each ¯uid-solid particle pair from the distance
between them and, consequently, is not constant. In order to see the practical implications of
this fact, we take the ensemble mean of (15) squared:

h�vn�1�2i �h�aEvL � bEe�2i �
�
exp

�
ÿ r

LE

�
vL

�2* +
� hb2Ee2i � 2 exp

�
ÿ r

LE

�
vLe

� �

� exp

�
ÿ 2r

LE

�
v2L

� �
� 1ÿ exp

�
ÿ 2r

LE

�� �
s2f :

�27�

If we accept the equality

exp

�
ÿ 2r

LE

�
v2L

� �
� exp

�
ÿ 2r

LE

�� �
hv2Li � exp

�
ÿ 2r

LE

�� �
s2f ; �28�

we ®nd h(v n+1)2i= s f
2, i.e. the ¯uid turbulent energy is conserved. In fact, for (28) to hold, r

and v L should be uncorrelatedÐwhich is obviously not the case, because of (13) and (17). Let
us try to quantify the in¯uence of this correlation on the kinetic energy of the ¯uid `seen'

during a numerical simulation. We call s n the value of

�������������
h�vn�2i

q
. If the ¯uid turbulent energy

were conserved in the simulation, we would have s n=sf for any n. Let us compute s n+1

from (27), for rWLE:

s2n�11
�
1ÿ 2r

LE

�
�aLvn � bLe

n�2
� �

� 2

LE
hris2f

1
�
1ÿ 2r

LE

�
a2L�vn�2

� �
� 1ÿ 2r

LE

� �
�1ÿ a2L�s2f �

2

LE
hris2f ;

�29�

r stands for the instantaneous relative distance and is given by r= vv nÿv pnv Dt. Consider ®rst
the case of small particles which closely follow ¯uid motion (recalling that here g=0). In the
limit tp40 we have v r

n= v p
nÿv n40, hence hv rni40 and
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h�vnr �2i � s2f
1

1� TL=tp
40: �30�

Using the formulae for the moments of the random variable vv nv where v n $ N (0,s n)
(Papoulis, 1991)

hjvnji �
���
2

p

r
sn; hjvnj3i � 2

���
2

p

r
s3n; �31�

for r4 0 we obtain

hri � hjvnr jiDt �
���
2

p

r
Dt

�������������
h�vnr �2i

q
40 �32�

and hr 2i= h(v rn)2i4 0. In the other limit of large particles:

vnp10 ) r1jvnjDt: �33�

Using this, we write (29) in the form

s2n�11a2Ls
2
n ÿ a2L

2Dt
LE
hjvnj3i � �1ÿ a2L�s2f � a2L

2Dt
LE
hjvnjis2f

�s2f � a2L�s2n ÿ s2f � �
2Dt
LE

a2L

���
2

p

r
sn�s2f ÿ 2s2n�:

�34�

We notice that for s n=sf one has s n+1<s n. On the other hand, direct inspection of (34)
shows that there exists a stationary value of the turbulent kinetic energy of the ¯uid `seen'. In
other words, there exists s n such that 0< s n<sf and s n+1=s n. We suppose that a
qualitatively similar behaviour is typical for any particle size. Indeed, the numerical realization
of the method con®rms that the turbulent kinetic energy of the ¯uid `seen', calculated as the
ensemble mean h(v n)2i, decreases from its initial value by a certain amount (depending on the
particle diameter) and levels o� after a time of the order of the particle relaxation time tp.
Typical results for three particle diameters d are plotted in Fig. 5. This result shows an
important drawback of the model, for the kinetic energy of the ¯uid `seen' by the particles
should not depend on the particle diameter.

3.4. Particle inertia e�ect

In this subsection, we still consider the no-gravity case; therefore, only particle inertia
in¯uences turbulent dispersion. In particular, large heavy particles hardly respond to the ¯uid
motion and are nearly at a standstill; for such particles, the timescale of the ¯uid `seen' TL* is
approximately the Eulerian time scale TE. Yet, due to the use of the instantaneous relative
velocities which are not negligible here, the Lagrangian model we are considering does not
meet this physical condition.
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To justify this statement, consider correlation of the ¯uid velocity along particle trajectories:

R�L�Dt� � exp

�
ÿ r

LE

�
exp

�
ÿ Dt
TL

�� �
1 exp

�
ÿ Dt

�
1

TL
� jvrj

LE

��� �
: �35�

The relative velocity vr is a random vector of zero mean; its components can be assumed to be
independent Gaussian variables with a variance s r

2= hv r2i given by (30). Hence

hjvrji � 1

�2p�3=2s3r

� � �1
ÿ1

����������������������������
v2rx � v2ry � v2rz

q
exp

�
ÿ v2rx � v2ry � v2rz

2s2r

�
dvrxdvvydvrz

� 8p

�2p�3=2 sr � Csr � C
sf���������������������

1� TL=tp
p �36�

and

R�L�Dt� � exp

�
ÿ Dt

�
1

TL
� C

TE

���������������������
1� TL=tp

p ��
: �37�

As a consequence, the resulting integral timescale of the ¯uid `seen', TL*= f01 RL*(t) dt, is
equal to

Fig. 5. Mean turbulent energy of the ¯uid `seen'; simulation using Eqs. (13) and (15). TL=0.0233 s,
tp(d=5 mm)=2�10ÿ4 s, tp(d=30 mm)=3�10ÿ3 s, tp(d=90 mm)=5�10ÿ2 s.
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T�L � TL

�
1� bC���������������������

1� TL=tp
p �ÿ1

�38�

where C=2
������
2p
p

and b= TL/TE. The velocity correlation of the ¯uid seen by nearly immobile

heavy particles should be close to the Eulerian temporal correlation:

R�L�Dt�1 exp

�
ÿ Dt
TE

�
: �39�

However, even in the absence of gravity, the LIV model involves a signi®cant decrease of TL*

that does not tend towards the correct limit (the Eulerian scale TE) for large particles, tp/TLw1.

The resulting time scale is equal to TL*= TL/(1+ bC)10.4 TL.

This short analysis states clearly that in the case of large heavy particles the correlation

RL*(t), the timescale of the ¯uid `seen', TL*, and consequently the particle di�usivity are

arti®cially reduced by the very principle of the method considered. The asymptotic case that we

have just considered reveals a serious discrepancy (the timescale is reduced more than twice).

Similar trends are visible for smaller particles. In order to demonstrate and quantify this

discrepancy, numerical simulations using (13) and (15) have been performed for two particle

diameters: 5 and 57 mm, the same as in the Wells and Stock (1983) experiment. Gravity is still

switched o� and thus there is no mean drift. In this case, the timescales of the ¯uid `seen' are

always greater than TL. If we consider that the increase which has been found for a certain

range of particle diameters is due to instantaneous turbulent structures that cannot be taken

into account within the framework of statistical Lagrangian model, then the di�erent timescale

values are between TL and TE. Therefore, since TL1TE (TL=0.92 TE), the timescale TL* for

any particle inertia should be greater than TL in the absence of external forces.

It is evident from Fig. 6 that the LIV model does not respect this physical condition. The

e�ect is not clearly marked for the 5 mm particle since the relative velocities remain small. On

the contrary, in the case of 57 mm particles, the relative velocities are larger due to higher

particle inertia and bring about a signi®cant decrease of the timescale TL*.

Finally, in Table 1 we present the results of the numerical simulation of particle dispersion

in stationary isotropic turbulence using the LIV model. Mean-square displacement values,

Sp(t)= hX p
2(t)i, for two particle diameters are compared to the classical Taylor formula

(c.f. Hinze, 1975). As before, results are not satisfactory; however, for smaller particles,

Sp values remain closer to ¯uid di�usion.

Table 1
Particle dispersion in stationary isotropic turbulence. TL=0.2 s,
sf =1.0 m/s, rp=2400 kg/m3, rf =1.17 kg/m3

Sp(TL) Sp(5TL)

Theory (Taylor) 0.020 0.214
d=5 mm 0.018 0.185
d=57 mm 0.013 0.136
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3.5. E�ect of crossing trajectories

When gravity is introduced in the picture, a mean drift triggers the crossing trajectory e�ect.
In this case, the erroneous trends displayed in the previous section still lead to an incorrect
behaviour of the model based on the instantaneous relative velocity. This is due to the fact that
the mean free-fall velocity of particles in a turbulent ¯uid, vg= vhvpiv= tp g is `screened' by the
ensemble mean relative velocity, calculated as vr= hvvpÿvvi. Results of numerical simulation
con®rm that for the small particles we have vgWvr. As a consequence, the timescales predicted
by the LIV model are considerably reduced compared to those obtained from the analysis of
Csanady. The discrepancies are a bit less marked for the large particles when gravity is acting
on them.

4. New Particle Dispersion Model

Conclusions from a thorough analysis of the LIV model, backed by numerical simulations,
will now serve to advance new propositions. Particular emphasis will be put on the Eulerian
step which proves to be the most di�cult to cope with in order to obtain better modelling of
both particle inertia and crossing trajectory e�ects. Our propositions are developed from a
di�erent starting point than in the LIV model. Namely, we consider an ensemble of ¯uid (or
solid) particles having some average properties, instead of an individual particle and we
consequently adopt this point of view. It should be added here that a similar `philosophy' is

Fig. 6. Velocity correlation coe�cient RL*(t) for the ¯uid seen by particles: (a) d=5 mm; (b) d=57 mm. Simulation
using LIV model [Eqs. (13) and (15)]. Solid lineÐexponential correlation exp (ÿt/TL);�and rÐtwo typical
simulations of the correlation for the same velocity component;+and oÐthe cross-correlation (zero in isotropic

turbulence; the statistical noise level is clearly seen).
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already inherent to the Lagrangian step since the correlation coe�cient used is representative
of the average Lagrangian particle behaviour. A new model, based on the above-presented
approach, will be proposed in the sequel.

4.1. Inertia e�ect

First, consider the no-gravity case. In the limit of large, nearly immobile heavy particles
sp/sf40) the timescale `seen' is TE whereas TL is the correct value for the other limit of
extremely small particles which behave nearly as ¯uid elements.
To take account of particle inertia e�ect, let us consider a schematic drawing (Fig. 7) where

one possible realization of the turbulent velocity ®eld is plotted as an example. The average
distance covered by the ¯uid particle during the time interval Dt is O(sfDt) since
hvvvi= sf

��������
2=p
p

=O(sf ). To calculate the velocity vn+1 of the ¯uid seen by the particle at the
point Pn+1, we make use of two velocities at the time t n+1 correlated with vn and obtained
from the Langevin equation model:

vL � aLv
n � bLeL; vE � aEv

n � bEeE �40�
with

aL � exp

�
ÿ Dt
TL

�
; bL � sf

��������������
1ÿ a2L

q
; eL 2 N �0; 1�;

aE � exp

�
ÿ Dt
TE

�
; bE � sf

��������������
1ÿ a2E

q
; eE 2 N �0; 1�:

�41�

For the ¯uid velocity `seen' by the particle, we propose the following formula:

vn�1 � a1vL � a2vE � be: �42�
The physical reasoning behind this expression is that the average position of the solid particle
Pn+1 is between F n and F n+1 , with the distance PnP n+1=O(spDt). If the particle were

Fig. 7. Fluid velocity vectors at t n (vector vn) and at t n+1 (vectors vn+1, vL, vE).
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certain to be at Pn+1, we would omit the third, random term on the r.h.s. of (42), so that it
would be simply an interpolation formula in a given deterministic velocity ®eld at t n+1.
However, this is not the case; the pdf contour lines of the particle position Pn+1 in
homogeneous turbulence, given a ¯uid velocity vn at Pn, are schematically represented in
Fig. 8.
A large particle (case a) is nearly certain to stay close to its previous location Pn=F n,

whereas a small one (case c) is found in the vicinity of the twin ¯uid particle position F n+1.
For a medium-size particle (case b), the pdf of its position is more `blurred'. Actually, in this
case the random term in (42) will be much more signi®cant (as we will see soon) that in the
other two cases. Thus, (42) can be regarded as a spatial interpolation formula with some
uncertainty added which depends on the correlation level of ¯uid and solid particle motion.
To ®nd the coe�cients a1, a2 and b in (42), we require that given velocity correlations be

respected:

hvLvEi � s2f exp
�
ÿ sfDt

L

�
� s2f exp

�
ÿ Dt
TE

�
; �43�

hvn�1vEi �s2f exp
�
ÿ spDt

L

�
� s2f exp

�
ÿ x

Dt
TE

�
; �44�

hvn�1vLi �s2f exp
�
ÿ �sf ÿ sp�Dt

L

�
� s2f exp

�
ÿ �1ÿ x� Dt

TE

�
: �45�

We multiply (42) by vL, vE, v n+1, respectively, take the ensemble mean and substitute for
the velocity correlations. We thus obtain a system of three equations for a1, a2, b that yields:

a1 � a1ÿx ÿ a1�x

1ÿ a2
; a2 � ax ÿ a2ÿx

1ÿ a2
; b2 � s2f �1ÿ a21 ÿ a22 ÿ 2a1a2� �46�

with

x � sp
sf
; a � exp

�
ÿ Dt
TE

�
: �47�

Now, the correlations between two successive ¯uid velocities `seen' can be written as:

hvn�1vni � a1hvLvni � a2hvEvni � s2f �a1aL � a2aE�: �48�

Using the expressions for the coe�cients and considering small time steps DtWTL, we develop
(48) into a Taylor series. The ®nal result writes

1

s2f
hvn�1vni11ÿ Dt

�
x

TL
� 1ÿ x

TE

�
1 exp

�
ÿ Dt
T�L

�
; �49�

where TL* is de®ned as:
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1

T�L
� x

TL
� 1ÿ x

TE
: �50�

The form of the expression (46) for b assures that in the two limits, x=0, x=1, a random
term in (42) is equal to zero; b attains a maximum for some intermediate value of x (for
TL1TE, x10.5) which agrees with Fig. 8.
Eq. (50) can also be thought of as an alternative to the reasoning presented above. Namely,

this equation may be proposed from the outset as an interpolation formula for TL* to satisfy
the two limits: TL*= TL for tp40 and TL*= TE for tp41. The interpolation is based on
x= sp/sf , the ratio of particle to ¯uid r.m.s. turbulent velocity. Actually, the physical
underlying parameter is tp, the particle characteristic time. However, t p spans the whole real
axis, whereas x is a bounded variable. Both are closely related by the Tchen's expression (3)
con®rmed by LES: tp=TL(1ÿ x 2)/x 2.

4.2. Mean drift e�ectÐ®rst proposal (LMV)

The ®rst idea that comes to mind in order to improve the Eulerian step (15) consists in
taking the relative distance between the solid and the ¯uid particle, calculated on the basis of
the mean relative velocity:

r � jhvnpi ÿ hvnijDt �51�
instead of previously used expression

r � jvnp ÿ vnjDt: �52�

Fig. 8. The pdf contours of particle position for three di�erent inertia parameters.
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For the case of stationary isotropic turbulence in the gravity ®eld, we have hvni=0 and
vg= hvpni. In these expressions, vn stands for the ¯uid velocity `seen' and vg is the ensemble
mean particle free-fall velocity (the average settling velocity). In practical simulations, the
ensemble mean calculated at the previous time step is taken as the current value.
In (50), no-gravity case is considered (x=0). When gravity is non-zero, its in¯uence is taken

into account via the mean slip velocity. The model with gravity is schematically illustrated in
Fig. 9. The average location of the solid particle is Pn+1, while P 0

n+1 is its location with no
gravity. The ®rst simulation step consists in using the interpolation formula [symbols as in
Eq. (42)]

vn�10 � a1vL � a2vE � be �53�

and in the second step the Eulerian spatial correlation is used

vn�1 � aSv
n�1
0 � bSeS �54�

with

aS � exp

�
ÿ jvgDtj

LE

�
; bS � sf

�������������
1ÿ a2
p

; eS 2 N �0; 1�; �55�

where LE corresponds to LE�k� in the direction parallel to the gravity and to L E(_) in two other
(perpendicular) directions. This ®rst proposal, consisting of Eqs. (40), (53) and (54), will
temporarily be called the Langevin model with mean relative velocity (LMV).
Compute now the correlation of two subsequent ¯uid velocities along the particle trajectory.

Using (54), substituting for vL from (40) and taking the ensemble mean, we obtain:

hvni vn�1i i � s2f exp
�
ÿ Dt

�
1

T�L
� jvgj

LE

��
: �56�

Let us introduce two new variables TL�k�* and T L(_)*, de®ned by:

Fig. 9. Velocities of ¯uid particlesÐschematic drawing. Vector vn(t n) and vectors vn+1, vL, vE at t n+1.
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1

T�L�k�
� 1

T�L
� jvgj
sfTE

;
1

T�L�?�
� 1

T�L
� 2jvgj
sfTE

: �57�

We also de®ne b*= TL*/TE=sfTL*/LE and x= vvgv/sf (nondimensional settling velocity).
This implies that the Lagrangian step and the Eulerian step with the mean relative distance can
be melted into a single expression which represents, in fact, a Langevin model (11) with TL*(x)
equal to:

T�L�k��x� �
T�L

1� xb�
; T�L�?��x� �

T�L
1� 2xb�

; �58�

where TL* given by (50). As opposed to the Langevin model with instantaneous relative
velocity (LIV) there is no pitfall since vg is a constant. Also, the proposed Eulerian step
formula (54), contrary to the previous one, Eq. (15), gives an acceptable behaviour of dense
particles in the limit x=0. In other words, in the absence of an external force ®eld, this model
gives for the integral timescale of the ¯uid `seen', TL*:

T�L�j��x � 0� � T�L�?��x � 0� � T�L: �59�

4.3. Mean drift e�ectÐ®nal proposal (LMC)

Although the LMV model is correctly constructed as far as the kinetic energy of the ¯uid
seen by the particles and the inertia e�ect are concerned, simulation results of the crossing
trajectory e�ect using (58) in the case of stationary isotropic turbulence do not give full
satisfaction. Namely, as compared to the LES data (Deutsch, 1992), both TL�k�*(x) and
T L(_)*(x) diminish too quickly as x increases. This may be explained by the fact of having
applied the two-step approach, i.e. ®nding v 0

n+1= v(x=0) ®rst and then v n+1= v(x) based
on this value, which is supposed to somehow introduce an arti®cial decorrelation. This is why
we propose a modi®cation to simulate the particle dispersion in an external force (gravity)
®eld. In the limit vg40, it will boil down to the previous one. Let us consider once again a
schematic drawing, Fig. 9. As before, F n and Pn represent the ¯uid element and the particle
position at t= t n, respectively. Let us take

sp�k� �
������������
hv2p�k�i

q
; sp�?� �

�������������
hv2p�?�i

q
;

which stand for the r.m.s. particle ¯uctuating velocities in the directions parallel and
perpendicular to g, respectively. The mean distance travelled by the ¯uid particle in the time
interval Dt is RF= vRFv= vF nF n+1v= O(sfDt). The mean distance travelled by its virtual twin
dense particle P0, i.e. the particle situated at t n at the same point as the ¯uid element
(F n=Pn), belongs to the range s p(_)RspRsp�k�, depending on the direction of the vector
FnF n+1 with respect to gravity. By de®nition, there is no in¯uence of g on the motion of P0.
We assume that the virtual particle position P 0

n+1 lies on the surface of an ellipsoid centered
on F n, whose axes are equal to sp�k� in the direction of gravity and to s p(_) in the two other
directions (Fig. 10). Then we suppose that the `true' particle position Pn+1 is determined by
P 0

n+1, with rg= vP 0
nP 0

n+1v= vvgvDt. As before, the displacement rg represents the e�ect of the

J. Pozorski, J.-P. Minier / International Journal of Multiphase Flow 24 (1998) 913±945 933



gravity ®eld. The new approach consists in calculating the ¯uid velocity vn+1 `seen', i.e. at the
point Pn+1, from two velocities at t= t n+1: vL at the point F n+1, respecting the Lagrangian
correlation with vn, and vE at the point Fn, satisfying the Eulerian temporal correlation with vn.
We simulate vL and vE using the Langevin equation in the discrete form, Eqs. (40) and (41).
Let us come back to Fig. 9. Keeping in mind the fact that P 0

n+1 is situated somewhere on
the surface of the ellipsoid, we should consider Fig. 9 as one of possible realizations of the
¯uctuating velocity ®eld at the mean ¯uid and solid particle locations. The idea of the model is
to propose a Langevin-like equation to compute vn+1 from vL and vE [see Eq. (40)]:

vn�1i � a1ivLi � a2ivEi � bei; �60�
where a 1i, a 2i (i=1, 2, 3) represent the weights, calculated from the mean spatial correlation
coe�cients. The latter are found as averages over all possible directions of particle
displacements with regard to the direction of gravity; their meaning will become clear soon.
This formula di�ers signi®cantly from (42) proposed for the LMV model where weight
coe�cients were determined from correlations (43)±(45); now, the coe�cients take also the
non-zero slip velocity into account. For the case with no external force, Eq. (60) becomes
identical with (42). On the other hand, with external force (gravity) present, (60) allows to
compute v i

n+1 directly, contrary to the previously proposed two-step approach, (53) and (54).
Actually, the above Eq. (60) is the keystone of the new model, called for brevity the Langevin

Fig. 10. The ellipsoid of particle displacements.
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model with mean coe�cients (LMC). The values of a 1i, a 2i depend on whether the respective

velocity component is parallel or perpendicular to the gravity direction. In our notation (cf.

Fig. 10) we de®ne a1�k�, a 1(_) so that a 11=a 12=a 1(_) and a 13=a1�k�. In the same way a2�k�
and a 2(_) are introduced. So, we rewrite (60) in the form

vn�1i � a1�?�vLi � a2�?�vEi � b�?�ei for i=1,2
a1�k�vLi � a2�k�vEi

� b�k�ei for i=3.

�
�61�

To determine the unknown coe�cients, ®rst multiply (60) by vL and take the ensemble mean.

We obtain

hvn�1vLi � a1hv2Li � a2hvEvLi: �62�

The same operation applied to (60) and vE results in

hvn�1vEi � a1hvEvLi � a2hv2Ei: �63�

We introduce mean spatial correlation coe�cients aLP, a EP and aEL so that

aEL � hvEvLis2f
; aEP � hvEv

n�1i
s2f

; aLP � hvLv
n�1i

s2f
: �64�

An overbar has been added to stress the fact that all correlations should be considered as

directional averages in space. We rewrite (62) and (63) as

aLP � a1 � a2aEL and aEP � a1aEL � a2 �65�
which results in

a1 � aEPaEL ÿ aLP

1ÿ a2EL
; a2 � aLPaEL ÿ aEP

1ÿ a2EL
: �66�

Moreover, (61) yields

s2f � hvn�1vn�1i � a21hv2Li � a22hv2Ei � 2a1a2hvEvLi � b2: �67�

Thus

b2 � s2f �1ÿ a21 ÿ a22 ÿ 2a1a2aEL�: �68�

All the three velocity correlations in (64) can be determined from the following reasoning.

Consider a spherical system of coordinates (r,y,j) centered at the point Fn=Pn. The formulae

for our directionally averaged correlations write:
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hvEivLii � 1

4p

�
O
hvEi�0�vLi�RFr

0�idO;

hvEivn�1i i �
1

4p

�
O
hvEi�0�vn�1i �RP�r0�r0 ÿ rgz

0�idO;

hvLivn�1i i �
1

4p

�
O
hvLi�RFr

0�vn�1i �RP�r0�r0 ÿ rgz
0�idO;

i � 1; 2; 3 �no sum over i�;

�69�

where dO=siny dj dy is the in®nitesimal solid angle corresponding to vector RF (and the unit
vector r0). In (69) use has been made of the fact that the pdf of the direction of RF is uniform.
More technical details of the numerical procedure can be found elsewhere (Pozorski et al.,
1993; Pozorski, 1995).

Summarizing this section: starting from (40), the ®rst version of the new method (LMV)
consists in a two-step scheme, (53) and (54), used to calculate the next velocity of the ¯uid
element seen by a particle; its improvement (LMC model) proposes a new formula with use of
only one expression (60) that contains both inertia and mean drift e�ects and relies on the
averaging over all possible directions of ¯uid element displacement.

The principal idea of both above presented variants is to consider the dispersion process
from the point of view of the `mean' solid particle and the twin `mean' ¯uid particle. In this
process we implicitly skip one step in the averaging procedure. Namely, the complete reasoning
that can be thought of should take into account all ¯uid particles by introduction of the pdf of
their velocity. Instead, we make use of the fact that the velocity of the ¯uid particle is of the
order of sf . Moreover, one should consider the probability density of the solid particle
position, conditional on the twin ¯uid particle velocity. For further study, we suggest
proceeding in this direction rather than to start the reasoning from the instantaneous solid
particle position (and displacement) and to consider the accompanying ¯uid particle. This
would allow to avoid the problems with ensemble averages of spatial correlation that might
imply the non-conservation of the ¯uid turbulent kinetic energy during the simulation [cf.
Eq. (29)].

Another point that deserves a comment concerns the relationship (if any) of the proposed
method and the procedure originally put forward by Sa�man (1963) to derive the Lagrangian
correlation coe�cient from the assumed form of the spatial and temporal Eulerian velocity
spectra. Sa�man's reasoning is based on the so-called Corrsin's conjecture, sometimes referred
to as the independence approximation, which establishes a relation between Lagrangian and
Eulerian correlation. However, the analogy is by no means complete: in the Corrsin
hypothesis, an average is taken to calculate the Lagrangian correlation, while in our approach
the procedure is still two-step and spatial averaging is applied to the Eulerian step only.

In our reasoning, we assumed that the particle displacement is of the order of spDt and thus
avoided the integration [cf. Eq. (69)] over all space with a particular form of the pdf of
displacement in a given direction. The fact that the pdf of the direction of displacement for the
accompanying ¯uid particle is uniform allowed us to solve the problem of the particle (and the
¯uid `seen') displacement by means of geometrical considerations in the spherical reference
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system. Use has also been made of the axial symmetry of the problem (with regard to the
direction of gravity). This somewhat heuristic procedure as well as the Langevin-type Eq. (60)
are thought to be justi®ed a posteriori by the obtained results on the simulation of turbulent
dispersion.

5. Numerical Results on Particle Dispersion

This section presents the results of numerical simulations using new dispersion model (LMC)
and the comparison with both experimental measurements and numerical data. The
experiments are those of Snyder and Lumley (1971) and Wells and Stock (1983) for particle
dispersion in grid turbulence. They are referred to as S&L and W&S, respectively. The
`numerical experiment' we refer to is the study of particle behaviour in a turbulent ¯ow
calculated from large eddy simulation (Deutsch, 1992). It has been argued that the numerical
experiments can in some cases yield more detailed results than the experimental measurements.
Therefore, comparison with these results constitutes a stringent test.
Below, we present results of the Lagrangian simulation of particle dispersion in grid

turbulence and in isotropic stationary turbulence. In both cases, the numerical algorithm is
essentially the same. Simulations consisted in tracking individual particle trajectories, released
from a ®xed point; particle dynamics is governed by (1) and (2). Velocity of the ¯uid seen that
enters (1) was modelled by (40), (53) and (54) in the preliminary model (LMV), or by (40) and
(60) in the ®nal model (LMC). Usually, an ensemble of 5000±20000 particles was tracked to
attain a reasonable trade-o� between the numerical accuracy (su�ciently low statistical error)
and the CPU time. During the simulation, statistics of particle motion such as mean-square
dispersion and the turbulent kinetic energy were computed using the ensemble averaging.

5.1. Grid turbulence

In both S&L and W&S experiments, particle trajectories were considered in a turbulent ¯ow
behind a grid in a wind tunnel. Several particle groups of di�erent diameter/density
combinations were used; this permitted to account for the inertia e�ect. The particles were
separately released in the ¯ow; individual trajectories of particles were followed by an optical
system and their positions were consecutively recorded by cameras placed along the tunnel.
Mean-square particle displacements have been found from gathered position data. Next, the
dispersion coe�cients have been calculated. Fluid turbulent energy and particle kinetic energy
decay were also obtained as well as the Eulerian spatial velocity correlation.
Moreover, in the second experiment (W&S), horizontal walls of the wind tunnel were two

metallic chargeable plates that produced the electric ®eld. Particles were electrically charged
and the e�ect of the external force ®eld was controlled by changing its intensity. This enabled
to counteract the in¯uence of gravity on particles and, in particular, to consider the particle
inertia e�ect alone.
Figs. 11 and 12 present results of our numerical simulations (NS) using the new model

presented in the previous Section; a slight modi®cation based on the self-similarity hypothesis
for grid turbulence has been introduced (for technical details, see Pozorski 1995). Moreover, to
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Fig. 11. Particle dispersion in grid turbulence: (a) mean-square displacement; (b) kinetic energy decay. Solid linesÐ

experimental data (Snyder and Lumley 1971); dashed linesÐnumerical simulation (NS); dotted lineÐS&Y formula
for ¯uid di�usion. White circles and asterisksÐhollow glass, white triangles and squaresÐcorn pollen; black
triangles and crossesÐcopper; black squaresÐ¯uid particles.
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complete the picture, a theoretical formula for ¯uid di�usion proposed by Sato and Yamamoto
(1987), denoted as S&Y, is also shown. Results of small particle dispersion (hollow glass of
S&L and 5 mm particles of W&S) are expected to stay close to those of ¯uid di�usion. As
readily seen, the overall agreement is satisfactory.

Fig. 12. Particle dispersion in grid turbulence, Wells and Stock (1983) experiment: (a) 5 mm particles; (b) 57 mm
particles. Dash-dotted linesÐg=0; solid linesÐg=9.81 m/s2, dashed linesÐg=20.7 m/s2, dotted lineÐS&Y
formula for ¯uid di�usion. Upper three lines are hand-®t linear approximation of the experimental data (Wells and
Stock), whereas lower ones represent results of numerical simulation (NS) performed in this study. In the 5 mm
particles case only one ( g=0) line is plotted; two others are identical.
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5.2. Stationary and isotropic turbulence

Next step in evaluating numerical models for ¯uid di�usion and particle dispersion is the
comparison of our results with those coming from LES (Deutsch, 1992) of a stationary
isotropic turbulent velocity ®eld. Its characteristics are: E=6.17 m2/s3, sf =0.283 m/s,
TE=0.026 s, TL=0.0233 s, rf=1.17 kg/m3. Computations have been performed for several
particle diameters, d=15, 45, 57, 90 mm; particle density was rp=2400 kg/m3.
First, the inertia e�ect is examined in the absence of gravity. Results of the simulations are

presented in Fig. 13 together with the LES data. TL*(St) has a characteristic `bell-shaped' form
starting from TE (for large heavy particles when tp41) and tending towards TL (for small
particles of tp40) as particle inertia decreases and particles follow the ¯uid motion more and
more closely. The timescales computed from LES reach a maximum of about 1.25 TL for a
particle diameter d130 mm corresponding to a Stokes number St= tp/TL10.3. A possible
explanation of this increase is the in¯uence of instantaneous turbulent structures: particle
locations are correlated with certain typical structures and in particular with the vorticity ®eld.
This results in longer life times of ¯uid structures along particle trajectories than along ¯uid
paths and consequently in higher Lagrangian timescales TL* (Squires and Eaton, 1991;
Deutsch, 1992). Nevertheless, to capture this e�ect in the Lagrangian simulation, sophisticated
models using (at least) two-point correlations of the turbulent ®eld would be needed. To the
best of the authors' knowledge, none have been proposed yet.
The emergence of turbulent structures clearly represents a serious challenge for Lagrangian

models. Indeed, all these models adopt a statistical point of view. Available ¯uid turbulent
data is made up only from the statistical moments of the velocity ®eld, since the averaging
process sweeps away turbulent instantaneous structures. Furthermore, there is no reason for
the statistical properties of the ¯uid `seen' to be equal to the statistical properties of the

Fig. 13. Lagrangian integral timescale seen by dense particles (d=90, 45, 15, 5 mm from left to right) as a function
of 1ÿ log(St). The Stokes number St= tp/TL. CrossesÐLES; diamondsÐLMV model; squaresÐLIV model.
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Eulerian velocity ®eld. Consequently, present statistical Lagrangian models are not able to
reproduce the `bell-shaped' curve yielded by DNS and LES. On the other hand, the two
asymptotic limits, TE (for tp41) and TL (for tp40) should be correctly simulated. Fig. 13
shows that the integral timescale `seen' calculated by the new model (LMV) changes from the
Eulerian timescale for the largest particles to the Lagrangian timescale for the smallest ones.
The result is not very easily noticed because in the present computation the value of b is close
to unity, b=0.92. As already stated at the end of Section 3, the results obtained from the
instantaneous relative velocity model (LIV) are obviously in error and particularly for larger
particle diameters.
The crossing trajectory e�ect has been thoroughly examined for three values of gravity. The

simulated values of TL*(x)/TL*(0), in directions both parallel (k) and perpendicular (_) to
gravity, are plotted in Fig. 14 for three particle diameters. Large eddy simulation results
(Deutsch, 1992) are compared to Csanady's formulae (4) and two Lagrangian simulation
methods: Langevin model with mean relative velocity (LMV) and its modi®ed version, the
Langevin model with mean coe�cients (LMC).
The results obtained using the preliminary variant of the new model (LMV) are

unsatisfactory. On the other hand, the results of its improved version (LMC) are in a good
agreement with those from the LES method. Moreover, the results are close to the Csanady's
formulae. We notice that both methods manifest similar asymptotic behaviour in the limits
x4 0, x41. Nevertheless, a sensitivity study (Minier and Pozorski, 1992) reveals that the
methods are by no means identical and that the discrepancy between the two families of curves
increases as the value of b, considered as a free parameter of the method, diminishes.
We would like to stress that our method gives TL*(x) values for any x using the same

general procedure, whereas Csanady's relations have been guessed from the known asymptotic
behaviour of the space±time velocity correlation for the ¯uid `seen' in the limits x4 0, x 41.
In Fig. 15, the correlation coe�cients of ¯uid velocity `seen' are presented for a few x values

and d=90 mm. The results are relatively close to those of Deutsch, with the only exception
that we are unable to reproduce negative regions in lateral velocity correlation, because of the
very nature of the Langevin model.

6. Conclusion

The aim of this paper was to discuss modelling of particle dispersion in turbulent two-phase
¯ows. We have mainly concentrated on the Lagrangian approach, considering ®rst random-
walk models for ¯uid elements and their generalisation for solid particles. Issues of the physical
soundedness and consistency of models have been addressed. It has been stated that methods
proposing straightforward extension of existing ¯uid di�usion models to the case of particle
dispersion are not devoid of serious imperfections. A detailed analysis of an often-used
Lagrangian model, i.e. the Langevin equation model with the instantaneous relative velocity
(LIV), backed with the results of numerical simulations, has revealed that the model does not
correctly predict neither the turbulent kinetic energy of the ¯uid `seen' by the particles nor the
inertia and the crossing trajectory e�ects.
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Fig. 14. Crossing trajectory e�ect in directions parallel (plots a,c,e) and perpendicular (plots b,d,f) to gravity: (a,b)

particles d=45 mm; (c,d) particles d=57 mm; (e,f) particles d=90 mm. SquaresÐLES results; solid lineÐLMC;
dashed lineÐCsanady's formulae; dot-dash line (underneath)ÐLMV.



In order to account for both inertia and mean drift in a correct manner, mean behaviour of
¯uid±particle pairs rather than instantaneous one should be incorporated into Lagrangian
dispersion models to satisfy consistency requirements. In accordance with this basic postulate,
a line of reasoning has been presented that results in a new, hopefully consistent, model; it
gives satisfying predictions when compared to the experimental evidence in the case of
isotropic and stationary turbulence.
However, the most di�cult and still uncompletely charted point is the extension of particle

dispersion models to the general case of complex inhomogeneous turbulent ¯ows, based on the
experience gathered both in homogeneous particulate ¯ows and Lagrangian modelling of ¯uid
turbulence. At the moment, models are formulated in terms of the instantaneous ¯uid velocities
seen by solid particles. The models follow the direct approach to particle dispersion: the
timescales of the ¯uid seen are assumed (along Csanady's proposals) and are used in a general
Langevin equation. The precise expression of the di�erent terms remains an open question and
it is hoped that the ideas put forward in the present contribution will be useful in this respect.
Although our attention has not been particularly drawn to the two-¯uid approach, both

Lagrangian and Eulerian description should be considered as complementary and obviously
inter-related. Indeed, they use similar models and only di�er in the choice of variables retained
for the numerical solution. Therefore, it is hoped that progress in the fundamental
understanding of inhomogeneous two-phase ¯ow phenomena, incorporated into Lagrangian
models, will ultimately result in more appropriate closure proposals in the Eulerian approach.

Fig. 15. Crossing trajectory e�ectÐvelocity correlations RL* of the ¯uid seen by the particles d=90 mm for three

values of gravity: 0, g and 2 g ( g=9.81 m/s2), in directions parallel (a) and perpendicular (b) to gravity. Solid
linesÐLMC model; dashed linesÐLES (Deutsch, 1992).
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